Molybdenum(IV) Oxo-complexes. Part II.¹ Crystal and Molecular Structure of Dichlorotris(diethylphenylphosphine)oxomolybdenum(IV), *cis-mer*-[MoOCl₂(PEt₂Ph)₃].

By Ljubica Manojlović-Muir *† and Kenneth W. Muir, School of Molecular Sciences, The University of Sussex, Brighton BN1 90J

The molecular geometry of the title compound has been determined by X-ray crystal-structure analysis from diffractometer data. The crystals are monoclinic, space-group $P2_1/c$, $a = 12\cdot238(6)$, $b = 14\cdot818(10)$, $c = 21\cdot687(10)$ Å, $\beta = 121\cdot28(3)^\circ$, Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix leastsquares to R 0.081 for 2283 reflections.

The crystals are built of monomeric molecular units, with distorted octahedral co-ordination around the molybdenum atom. The molybdenum-ligand bond distances are: Mo-O 1.801(9), Mo-Cl (*trans* to O) 2.424(4), Mo-Cl (*trans* to P) 2.482(4), Mo-P (*trans* to Cl) 2.522(4), and Mo-P (*trans* to P) 2.580(5) and 2.553(5) Å.

THE blue and green forms of the complex *mer*-[MoOCl₂- $(PMe_2Ph)_3$] are believed to be geometrical isomers with the oxygen atom *trans* to chlorine or phosphorus, respectively.² However, the spectral properties of the two isomers are so similar that it seemed desirable to subject their solids to an X-ray diffraction study of the molecular structures. In Part I we have shown that the molecular geometry of the blue form agrees with that predicted from spectroscopic data. Unfortunately, we were unable, at the time, to investigate the structure

† Present address: The Department of Chemistry, The University of Glasgow, Glasgow G12 8QQ.

of the green isomer, for the attempts to obtain crystals suitable for X-ray analysis were not successful. Following the suggestion of Butcher and Chatt² that all green compounds of the series *mer*-[MoOX₂L₃] (where X =halogen or pseudo-halogen, and L = monotertiary phosphine) have the same configuration around the molybdenum atom, we have determined the crystal structure of the green complex *mer*-[MoOCl₂(PEt₂Ph)₃] (I).

¹ Part I, Lj. Manojlović-Muir, J. Chem. Soc. (A), 1971, 2796. ² A. V. Butcher and J. Chatt, J. Chem. Soc. (A), 1970, 2652.

EXPERIMENTAL

The crystals are emerald-green, needle-like, prisms. They are stable in dry air, but decompose rapidly in solvents containing oxygen or moisture.²

Crystal Data.— $C_{30}H_{45}Cl_2MoOP_3$, M = 681.5, monoclinic, $a = 12 \cdot 238(6)^*$, $b = 14 \cdot 818(10)$, $c = 21 \cdot 687(10)$ Å, $\beta =$ $121.28(3)^{\circ}$, U = 3361 Å³, $D_{\rm m} = 1.37$ (by flotation in aqueous zinc chloride), Z = 4, $D_c = 1.346$, F(000) = 1416, Mo- K_{α} radiation, $\lambda = 0.7107$ Å, $\mu(Mo-K_{\alpha}) = 7.2$ cm⁻¹. Space-group $P2_1/c$.

Measurements.-For the diffraction measurements, a crystal of dimensions $0.010 \times 0.018 \times 0.056$ cm was mounted on a Hilger and Watts' Y290 four-circle diffractometer, controlled by a PDP 8 computer; the orientation of the crystal was such as to make b^* nearly coincident with the ϕ axis of the instrument. Molybdenum radiation was used, in conjunction with a zirconium filter and a pulse-height analyser. The unit-cell parameters, initially determined from X-ray photographs, were adjusted by a least-squares treatment of the setting angles of twelve manually centred reflections. The intensity measurements were made using the θ -2 θ scan technique, with a scan step in 2θ of 0.02° and a counting time for each step of 1 s. Each reflection was scanned through a 2θ range of 1.60° (centred on the Mo- K_{α} peak), and the local background was counted for 20 s at each end of the scan range. To check the crystal and electronic stability, the intensities of two strong reflections were monitored periodically throughout the data collection, but no significant changes in their values were observed.

All independent reflections in the sphere with $2\theta(Mo-K_{\alpha})$ $\leqslant 44{\cdot}0^\circ$ were measured, and their integrated intensities, I, and corresponding variances, $\sigma^2(I)$, were derived as described previously.¹ The empirical factor, q, in the expression for $\sigma^2(I)$ was assigned a value of 0.04. Of 4019 measured reflections only 2283, for which $I \ge 3\sigma(I)$, were employed in the subsequent analysis. Their I and $\sigma(I)$ values were corrected for Lorentz and polarization effects, but not for absorption.

Structure Analysis .- The position of the molybdenum atom was determined from a three-dimensional Patterson function, and the positions of the other non-hydrogen atoms from subsequent difference syntheses. The structural model was refined by full-matrix least-squares. The function minimized, the expressions for the leastsquares weights, w, and the weighted agreement factor, R', and also the computer programs used were as described in Part I.¹ The atomic scattering factors were taken from ref. 3, except those for molybdenum⁴ and hydrogen.⁵ The anomalous dispersion was accounted for in the structure-factor calculations, using Cromer's values⁶ of $\Delta f'$ and $\Delta f''$ for molybdenum, chlorine, and phosphorus.

The refinement of the positional and isotropic thermal parameters of all non-hydrogen atoms brought R to 0.136. An allowance was then made for the anisotropic thermal vibrations of molybdenum, chlorine, phosphorus, and oxygen atoms and R decreased to 0.087. Benzene ring hydrogen atoms and those belonging to five (of the six) methylene groups were located in a low-angle difference synthesis based on data with $\sin \theta / \lambda \leq 0.35$ Å⁻¹. All

* Throughout the paper limits of error are estimated standard deviations. They are derived from the appropriate least-squares matrix or, in the case of mean values, from the range of individual measurements, and are given in the units of the least significant digit of the quantities to which they refer.

hydrogen atoms of these two types were included in the structure-factor calculations, but their parameters, derived from the known stereochemistry of the phenyl and methylene groups, were not refined. The refinement converged at R 0.081 and R' 0.081.

The final atomic parameters are shown in Table 1. In the last cycle of refinement all parameters shifted by

TABLE 1

Final fractional co-ordinates $(\times 10^4)$ and thermal parameters of atoms

Atom	x	y	z	$B/{ m \AA^2}$
Mo	$1192 \cdot 5(10)$	$2051 \cdot 3(9)$	$3132 \cdot 0(6)$	*
Cl(1)	1665(4)	0458(3)	3377(2)	*
Cl(2)	2318(3)	2252(3)	4460(2)	*
P(1)	0070(3)	1489(3)	1848(2)	*
$\mathbf{P}(2)$	3412(4)	2331(3)	3300(2)	*
P(3)	-0815(3)	1872(3)	3202(2)	*
O` ´	0766(7)	3210(6)	2862(5)	*
C(1)	1053(13)	1113(10)	1493(7)	4.6(3)
C(2)	1871(13)	0408(10)	1826(7)	$4 \cdot 9(3)$
C(3)	2643(14)	0075(11)	1588(8)	5.8(4)
C(4)	2585(16)	0467(13)	0993(9)	6.7(4)
C(5)	1785(16)	1144(12)	0652(9)	6.5(4)
C(6)	0981(14)	1467(11)	0888(8)	5.8(4)
C(7)	-1105(15)	2264(12)	1155(9)	6.2(4)
C(8)	-0745(17)	3181(13)	1097(9)	7.7(5)
C(9)	-0918(13)	0484(10)	1687(7)	4.7(3)
C(10)	-1577(16)	0041(12)	0928(9)	6.7(4)
C(11)	4592(13)	1482(10)	3694(8)	$4 \cdot 6(3)$
C(12)	5068(17)	1211(13)	4404(10)	7.8(5)
C(13)	5997(19)	0452(14)	4742(10)	8.6(5)
C(14)	6395(16)	0090(13)	4378(10)	$7{\cdot}2(4)$
C(15)	5960(17)	0300(13)	3713(10)	$7 \cdot 1(4)$
C(16)	4996(15)	0941(12)	3319(8)	$6 \cdot 1(4)$
C(17)	3511(17)	2654(13)	2507(9)	$7{\cdot}2(4)$
C(18)	2771(28)	3475(22)	2121(16)	14.5(9)
C(19)	4097(20)	3309(15)	3892(11)	$9 \cdot 2(5)$
C(20)	5469(30)	3551(23)	4119(17)	16.0(10)
C(21)	-2316(11)	2242(9)	2411(6)	$3 \cdot 2(3)$
C(22)	-2453(12)	3068(10)	2177(7)	$4 \cdot 4(3)$
C(23)	-3569(15)	3473(12)	1591(9)	6.2(4)
C(24)	-4575(14)	2841(12)	1226(8)	6 ·0(4)
C(25)	-4471(15)	2008(12)	1404(9)	$6 \cdot 4(4)$
C(26)	-3313(13)	1631(10)	2027(8)	5.0(3)
C(27)	-1157(13)	0763(11)	3415(8)	$5 \cdot 3(3)$
C(28)	-0222(16)	0475(12)	4203(9)	7.3(4)
C(29)	-0778(14)	2621(10)	3877(8)	$5 \cdot 3(3)$
C(30)	-1986(16)	2573(12)	3963(9)	6 ·8(4)
* 1	These atoms w	ere assigned	l anisotropic	temperature
factor	s of the form: e	$xp[-10^{-5}(h^2)]$	$\beta_{11} + k^2 \beta_{22} + l^3$	$^2\beta_{33} + 2hk\beta_{12}$
+ 2hi	$(\beta_{13} + 2kl\beta_{23})].$	The final va	lues of the β_{ij}	parameters
are:				
Atom	B., B.,	Baa	Bra Bra	Baa
Mo	F11 P22 589(11) 799(0)	~33 990(A)	-3(0) 111(5)	~23 —66(5)
C1(1) 1	165(A6) 679(9)	220(4) (4) $303(13)$	157(98) 938(9)	- 00(0)
$C_1(2)$	891(40) 1100(9)	3) 303(13)	$100(20) \ 200(2)$	(10)
$\mathbf{P}(1)$	819(42) 687(9)	3) 230(12)	142(26) $170(10)$	(13) - 173(13)
P(2)	773(41) 576(2)	(12) (12) (12) (12) (12) (12)	-28(26) 248(2)	-67(17)
$\hat{\mathbf{P}}(3)$	660(35) 619(2)	190(11)	63(24) 136(1)	6) 24(14)
- (-)		-, -~~()		-,/

 $<0.5\sigma$. The standard deviation of an observation of unit weight was 1.9. The adequacy of the weighting scheme was confirmed by an analysis of the variation of the mean $w\Delta^2$ (where $\Delta = |F_0| - |F_c|$) with $|F_0|$ and $\sin \theta/\lambda$. The extreme function values of 1.3 and -1.4 eÅ⁻³ in the final

652(67) 347(32)

59(55) 124(42)

86(37)

 \sp{s} ' International Tables for X-Ray Crystallography,' vol. III,

Kynoch Press, Birmingham, 1962.
⁴ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
⁵ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

⁶ D. T. Cromer, Acta Cryst., 1965, 18, 17.

О

444(81)

difference synthesis were close to the position of the molybdenum atom. The average peak-height of the carbon atoms in the final electron-density synthesis was $4.5 \text{ e}^{\text{A}-3}$. Observed and calculated structure factors

TABLE 2

Molecular geometry of cis-mer-[MoOCl₂(PEt₂Ph)₃]

(a) Bond lengths (Å)

$\begin{array}{l} Mo-Cl(1)\\ Mo-Cl(2)\\ Mo-P(1)\\ Mo-P(2)\\ Mo-P(3)\\ Mo-O\\ P(1)-C(1)\\ P(1)-C(7)\\ P(1)-C(7)\\ P(2)-C(11)\\ P(2)-C(17)\\ P(2)-C(17)\\ P(3)-C(27)\\ P(3)-C(27)\\ P(3)-C(27)\\ P(3)-C(29)\\ C(7)-C(8)\\ C(9)-C(10)\\ C(17)-C(18)\\ C(19)-C(20)\\ C(27)-C(28)\\ \end{array}$	$\begin{array}{l} 2\cdot424(4)\\ 2\cdot482(4)\\ 2\cdot522(4)\\ 2\cdot5280(5)\\ 2\cdot553(5)\\ 1\cdot801(9)\\ 1\cdot82(2)\\ 1\cdot84(2)\\ 1\cdot83(2)\\ 1\cdot77(1)\\ 1\cdot85(2)\\ 1\cdot83(2)\\ 1\cdot83(2)\\ 1\cdot83(1)\\ 1\cdot81(2)\\ 1\cdot82(2)\\ 1\cdot43(3)\\ 1\cdot55(2)\\ 1\cdot49(4)\\ 1\cdot53(4)\\ 1\cdot54(2)\\ \end{array}$	$\begin{array}{c} C(29)-C(30)\\ C(1)-C(2)\\ C(2)-C(3)\\ C(3)-C(4)\\ C(4)-C(5)\\ C(5)-C(6)\\ C(6)-C(1)\\ C(11)-C(12)\\ C(12)-C(13)\\ C(13)-C(14)\\ C(13)-C(14)\\ C(15)-C(16)\\ C(16)-C(11)\\ C(21)-C(22)\\ C(22)-C(23)\\ C(23)-C(24)\\ C(24)-C(25)\\ C(25)-C(26)\\ C(26)-C(21)\\ \end{array}$	$\begin{array}{c} 1\cdot 58(3)\\ 1\cdot 37(2)\\ 1\cdot 38(3)\\ 1\cdot 39(3)\\ 1\cdot 33(2)\\ 1\cdot 41(3)\\ 1\cdot 37(3)\\ 1\cdot 37(3)\\ 1\cdot 39(3)\\ 1\cdot 49(3)\\ 1\cdot 25(4)\\ 1\cdot 29(3)\\ 1\cdot 41(2)\\ 1\cdot 40(3)\\ 1\cdot 40(3)\\ 1\cdot 40(3)\\ 1\cdot 42(2)\\ 1\cdot 42(2)\\ 1\cdot 42(2)\\ 1\cdot 42(2)\\ 1\cdot 42(2)\\ 1\cdot 40(2)\\ 1\cdot 40(2)\\$
	(b) Bond a	angles (°)	
$P(1) - M_0 - P(9)$	(0) Dong a	C(27) - P(3) - C(20)	105.1/8)
P(1)-Mo-P(3)	$92 \cdot 4(1)$	P(1)-C(1)-C(2)	$118 \cdot 2(14)$
P(1) - Mo - Cl(1)	81.5(1)	P(1) - C(1) - C(6)	123.9(12)
P(1) - Mo - Cl(2)	$167 \cdot 6(2)$	P(2) - C(11) - C(12)	120.6(15)
P(1)-Mo-O	$93 \cdot 2(3)$	P(2)-C(11)-C(16)	$125 \cdot 0(11)$
P(2)-Mo-P(3)	$169 \cdot 6(1)$	P(3)-C(21)-C(22)	120.7(9)
P(2)-Mo-Cl(1)	90.7(2)	P(3)-C(21)-C(26)	120.4(10)
P(2)-Mo-Cl(2)	84.7(2)	P(1)-C(7)-C(8)	120.6(11)
P(2) - Mo - O	90.0(3)	P(1) - C(9) - C(10)	118.2(13)
P(3) = MO = CI(1) P(3) = MO = CI(3)	90.7(2) 85.1(1)	P(2) = C(17) = C(18) P(2) = C(10) = C(20)	114.8(21)
P(3) = MO = CI(2)	80.6(3)	P(2) = C(19) = C(20) P(3) = C(27) = C(28)	112.2(21)
$(1) - M_0 - CI(2)$	86.4(2)	P(3) - C(29) - C(30)	115.6(10)
Cl(1) - Mo - O	174.7(3)	C(1)-C(2)-C(3)	122.0(16)
Cl(2)-Mo-O	98.9(3)	C(2) - C(3) - C(4)	119.0(15)
Mo - P(1) - C(1)	117.9(4)	C(3) - C(4) - C(5)	120.1(21)
Mo-P(1)-C(7)	$116 \cdot 2(6)$	C(4) - C(5) - C(6)	120.6(20)
Mo-P(1)-C(9)	113.9(5)	C(5)-C(6)-C(1)	$120 \cdot 4(14)$
Mo-P(2)-C(11)	$119 \cdot 4(6)$	C(6)-C(1)-C(2)	117.8(17)
Mo - P(2) - C(17)	118.9(6)	C(11) - C(12) - C(13)	$122 \cdot 4(21)$
Mo - P(2) - C(19)	107.0(9)	C(12) = C(13) = C(14)	117.5(20)
MO = P(3) = C(21)	110.2(0)	C(13) = C(14) = C(15) C(14) = C(15) = C(16)	122.4(19)
$M_{0} = P(3) - C(27)$	111.3(0) 111.2(6)	C(14) = C(15) - C(16) - C(11)	124.9(22) 118.1(16)
C(1) - P(1) - C(7)	104.7(8)	C(16) - C(11) - C(12)	$113 \cdot 8(15)$
C(1) - P(1) - C(9)	100.7(8)	C(21) - C(22) - C(23)	127.7(13)
C(7) - P(1) - C(9)	101.1(7)	C(22) - C(23) - C(24)	111.9(14)
C(11) - P(2) - C(17)	101.7(9)	C(23)-C(24)-C(25)	$123 \cdot 2(13)$
C(11) - P(2) - C(19)	$105 \cdot 3(8)$	C(24)-C(25)-C(26)	$122 \cdot 8(14)$
C(17) - P(2) - C(19)	102.7(11)	C(25)-C(26)-C(21)	$115 \cdot 4(13)$
D(21) = P(3) = C(27)	105.0(6)	C(26) - C(21) - C(22)	$118 \cdot 8(10)$
$(21)^{-1}(3)^{-1}(29)$	99.9(0)		

(c) Selected intramolecular contacts (Å)

$O \cdots Cl(2)$	3.29	$Cl(2) \cdot \cdot \cdot P(2)$	3.41
$\mathbf{O} \cdots \mathbf{P}(1)$	3.18	$Cl(2) \cdot \cdot \cdot P(3)$	3.41
$\mathbf{O} \cdot \cdot \cdot \mathbf{P}(2)$	3.12	$Cl(2) \cdot \cdot \cdot C(19)$	3.39
$\mathbf{O} \cdot \cdot \cdot \mathbf{P}(3)$	3.11	$C1(2) \cdot \cdot \cdot C(29)$	3.36
$Cl(1) \cdots Cl(2)$	3.36	$\mathbf{P}(1) \cdot \cdot \cdot \mathbf{P}(2)$	3.85
$Cl(1) \cdots P(1)$	3.23	$P(1) \cdot \cdot \cdot P(3)$	3.66
$Cl(1) \cdots P(2)$	3.56	$P(2) \cdots C(1)$	3.90
$Cl(1) \cdots P(3)$	3.54	$P(3) \cdot \cdot \cdot C(9)$	3.82
$Cl(1) \cdots C(2)$	3.50	$C(1) \cdot \cdot \cdot C(17)$	3.50
$Cl(1) \cdots C(9)$	3.38	$C(2) \cdot \cdot \cdot C(16)$	3.59
$Cl(1) \cdots C(27)$	3.53	$C(3) \cdot \cdot \cdot C(16)$	3.58
$Cl(1) \cdots C(28)$	3.58	$C(7) \cdot \cdot \cdot C(22)$	3.58

TABLE 2 (Continued)

(d) Mean planes through various sets of atoms

(i) Displacements (Å) of atoms from the planes. Atoms not included in the derivation of planes are italicized

			*		
\mathbf{Pla}	ane (A)	Pla	ne (B)	Pla	ne (C)
P(1)	-0.029	P(1)	-0.128	0	-0.187
0	0.029	$\mathbf{P}(2)$	0.139	Cl(1)	-0.136
CI(1)	0.028	$\mathbf{P}(3)$	0.146	P(2)	0.160
Cl(2)	-0.022	Cl(2)	-0.152	P(3)	0.163
Mo	0.029	Mo	0.123	Mo	-0.010
Pla	ane (D)	Pla	ne (E)	Plai	ne (F)
C(1)	-0.012	C(11)	-0.042	C(21)	-0.022
C(2)	0.003	C(12)	-0.004	C(22)	0.026
C(3)	0.009	C(13)	0.041	C(23)	0.006
C(4)	-0.001	C(14)	-0.026	C(24)	-0.016
C(5)	-0.006	C(15)	-0.021	C(25)	0.016
C(6)	0.018	C(16)	0.059	C(26)	0.003
P(1)	-0.002	P(2)	0.022	P(3)	-0.049

(ii) Equations of planes

are listed in Supplementary Publication No. SUP 20287 (8 pp., 1 microfiche).*

Throughout the refinement, the thermal parameters of some carbon atoms were rather large. For C(18) and C(20)

The molecular structure of cis-mer-[MoOCl₂(PEt₂Ph)₃]. The thermal motion ellipsoids enclose 50% of probability

the final B values are so high as to suggest a slight positional disorder, but no evidence for such disorder could be found in any of the difference syntheses. Furthermore, in the molecular model refined no allowance has been made for the anisotropic thermal vibration of the carbon atoms. The range of the chemically equivalent $C(sp^2) - C(sp^2)$ bonds is greater than can be accounted for in terms of the least-squares standard deviations (Table 2). However, although the structural model of the groups attached to the phosphorus atoms is somewhat approximate, the parameters of the molybdenum atom and of the atoms bonded to molybdenum are unlikely to be systematically in error, for they are not strongly correlated with those of the carbon atoms. Moreover, the amplitudes of vibration of the molybdenum, chlorine, phosphorus, and oxygen atoms are normal (Figure, Table 3).

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No 20.

TABLE 3

Root-mean-square amplitudes of vibration (Å) along principal axes of thermal ellipsoids

Atom	Axis (1)	Axis (2)	Axis (3)
Mo	0.172	0.220	0.289
Cl(1)	0.221	0.261	0.292
Cl(2)	0.172	0.243	0.395
$P(\hat{1})$	0.183	0.217	0.283
P(2)	0.206	0.245	0.295
P(3)	0.176	0.212	0.264
O` ´	0.155	0.250	0.291

DISCUSSION

The crystal structure of *cis-mer-*[MoOCl₂(PEt₂Ph)₃] (I) is built of monomeric molecular units. All intermolecular interactions are of the van der Waals type (Table 4).

TABLE 4

Intermolecular distances ≤ 3.80 Å

$C(13) \cdot \cdot \cdot C(13^{1})$	3.44	$C(10) \cdot \cdot \cdot C(5^{V})$	3.74
$O \cdot \cdot \cdot C(9^{II})$	3.49	$C(10) \cdots C(4V)$	3.75
$C(28) \cdots C(28^{III})$	3.50	$Cl(2) \cdot \cdot \cdot C(24^{v_1})$) 3.75
$O \cdot \cdot \cdot C(10^{11})$	3.54	$C(8) \cdot \cdot \cdot C(28^{II})$	3.77
$C(20) \cdot \cdot \cdot C(30^{IV})$	3.61	$C(20) \cdot \cdot \cdot C(4^{V1})$	¹) 3·79
$C(13) \cdots C(12^{I})$	3.70	$C(23) \cdots C(15^{11})$	⁽) 3.79
$C(23) \cdots Cl(1^{II})$	3.73	$C(18) \cdots C(27^{11})$	ú) 3·79

The superscripts refer to the following transformations of the atomic co-ordinates x, y, z:

1	1 - x, -y, 1 - z	$\nabla -x, -y, -z$
ΙI	$-x, \frac{1}{2} + y, \frac{1}{2} - z$	VI $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$
III	-x, -y, 1-z	VII $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$
IV	1 + x, y, z	

The molecular structure of the complex (Figure) differs significantly from that deduced from spectroscopic data.² As expected, the co-ordination polyhedron around the molybdenum atom is a highly distorted octahedron and the arrangement of the phosphine ligands is meridional. Surprisingly, the oxygen atom is trans to chlorine. The configuration of ligands around the molybdenum atom is therefore the same as in the blue isomer of cis-mer-[MoOCl₂(PMe₂Ph)₃]¹ (II). However, the details of the molecular geometries of these closely related complexes show some unexpected differences.

The Mo-O bond length is 1.801(9), whereas in (II) it is only 1.676(7) Å. However, the Mo-O stretching frequency in (I) of 940 is close to that in (II) of 954 cm⁻¹, and they are both in the range expected for Mo-O multiple bonds.² Furthermore, the comparable Mo-O distance of 1.834(9) Å in trans- $[MoO_2(CN)_4]^{4-}$ is believed to indicate considerable multiple-bonding character.7

The Mo-Cl (trans to O) distance is 2.424(4), and the corresponding one in (II) is 2.551(3) Å. The shortening of this bond in (I) appears to be related to the longer Mo-O distance, which implies a smaller donation of charge density from oxygen to molybdenum, compared with (II), and consequently weaker electrostatic repulsion of the trans chlorine atom.⁸⁻¹¹ The Mo-Cl (trans to P) distance of 2.482(4) is comparable with the analogous one in (II) of 2.464(3) Å and, likewise, it reflects the trans-influence (ca. 0.1 Å) of a co-ordinated tertiary phosphine in octahedral complexes.¹²

The Mo-P (trans to Cl) bond is 2.522(4) Å, and the mean length of the Mo-P (trans to P) bonds is 2.567(14)Å. These values may be compared with the corresponding ones in (II) of 2.500(3) and 2.550(9) Å, and with the mean W-P (trans to P) distance of 2.550(3) Å in $[WCl_4(PMe_2Ph)_2]$.¹²

The geometry of the phosphine ligands is comparable with that in (II). The mean $P-C(sp^2)$ and $P-C(sp^3)$ distances of 1.805(20) and 1.831(6) Å, respectively, are consistent with those found in other co-ordinated tertiary phosphines.¹³ The mean $C(sp^2)-C(sp^2)$ and $C(sp^3)-C(sp^3)$ distances are 1.375(15) and 1.525(19) Å, respectively. All phenyl rings are planar within the limits of experimental error (Table 2). On average, the Mo-P-C angles are somewhat larger, and the C-P-C angles somewhat smaller than the tetrahedral value. Such a pattern is commonly observed in coordinated phosphines.^{13,14} An interesting feature, however, is the increase of the angles subtended at methylene carbon atoms by $3-10^{\circ}$ from the tetrahedral value.

The orientation of the organic substituents on the phosphorus atoms with respect to the co-ordination polyhedron around molybdenum (Figure) is different from that in (II). This may be a consequence of the different steric requirements of the PMe₂Ph and PEt_aPh ligands. As a result, the C_s molecular symmetry of (II) is not preserved in (I).

The only meridional plane in the octahedron around molybdenum, which can be considered planar, is that defined by the atoms O, Cl(1), Cl(2), and P(1). In this plane, electrostatic repulsion between anionic ligands appears to be the dominant factor in determining the angular distortions from ideal octahedral geometry (see Part I). The non-bonding $O \cdots Cl(2)$ and $Cl(1) \cdots Cl(2)$ contacts of 3.29 and 3.36 Å respectively are comparable with those of 3.33 and 3.41 Å in (II). In (I), where the Mo-O bond is longer than in (II), such contacts are achieved with much smaller angular distortions. Thus, the O-Mo-Cl(2) and Cl(1)-Mo-P(1)angles are, respectively, 98.9(3) and $81.5(1)^{\circ}$ in (I) and 105.7(3) and $76.9(1)^{\circ}$ in (II). In both complexes the acute Cl(1)-Mo-P(1) angles are coupled with very short $Cl(1) \cdots P(1)$ contacts. In (I), however, this contact is 3.23 Å, compared with 3.14 Å in (II), and some of the strain in this part of the molecule is relieved,

⁷ V. W. Day and J. L. Hoard, J. Amer. Chem. Soc., 1968, 90, 3374.

⁸ F. A. Cotton, S. M. Morehouse, and J. S. Wood, Inorg. Chem., 1964, 3, 1603.

P. C. H. Mitchell, Quart. Rev., 1966, 20, 103.

¹⁰ L. O. Atovmyan and M. A. Porai-Koshits, Zhur. strukt. Khim., 1969, 10, 853.

¹¹ J. R. Knox and C. K. Prout, Acta Cryst., 1969, B25, 2281.

¹² L. Aslanov, R. Mason, A. G. Wheeler, and P. O. Whimp, *Chem. Comm.*, 1970, 30.

 ¹³ M. A. Bush, A. D. U. Hardy, Lj. Manojlović-Muir, and
 G. A. Sim, J. Chem. Soc. (A), 1971, 1003, and references therein.
 ¹⁴ R. Mason and A. D. C. Towl, J. Chem. Soc. (A), 1970, 1601.

despite the shorter Mo-Cl (*trans* to O) bond. In the crowded P(1), P(2), P(3), Cl(2) plane the distortions are mainly due to the steric requirements of the bulky phosphine ligands, as indicated by some short contacts between carbon atoms of different phosphine ligands (Table 2).

The factor which causes the differences in the molecular geometries of these closely related complexes still remains obscure. It could be that the two geometries reflect different steric requirements and electronic properties of the PEt_2Ph and PMe_2Ph ligands. However, according to Butcher and Chatt's spectroscopic investigation of these and related complexes,² the configuration of the green isomer of (II) is the same as that of (I). Recently, Chatt and Dilworth have succeeded in isolating crystals of the green isomer of (II), and an X-ray crystal structure analysis of this complex is now in progress.

We thank Dr. A. V. Butcher and Professor J. Chatt for providing the crystals, Professor G. A. Sim for use of the diffractometer, and the S.R.C. for financial support and for use of the Chilton Atlas computer.

[1/1459 Received, 16th August, 1971]

C Copyright 1972 by The Chemical Society